[POI2015]-LOG
“每次选 $a$ 个正数并将它们都减去 $1$,判断能否进行 $s$ 次操作” 这一类题有个小技巧:
设大于等于 $s$ 有 $x$ 个,判定就转化为 $[ x s + (小于 s 的数字之和) >= a s ]$
用树状数组要对 $s$ 离散化即可。
code :1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
using namespace std;
const int N = 1e6 + 5;
typedef long long ll;
ll n, m, C[N], cnt[N], a[N], h[N << 1], num;
struct node { char opt; ll x, y; }q[N];
void add1(ll x, ll v) {
if (!x) return;
for (; x < N; x += lowbit(x)) C[x] += v;
}
ll ask1(ll x) {
if (!x) return 0;
ll ret = 0;
for (; x; x -= lowbit(x)) ret += C[x];
return ret;
}
void add2(ll x, ll v) {
if (!x) return;
for (; x < N; x += lowbit(x)) cnt[x] += v;
}
ll ask2(ll x) {
if (!x) return 0;
ll ret = 0;
for (; x; x -= lowbit(x)) ret += cnt[x];
return ret;
}
bool calc(int c, int s) {
ll x = ask1(num) - ask1(s - 1);
return x * h[s] + ask2(s - 1) >= 1ll * c * h[s];
}
int main() {
cin >> n >> m;
rep(i, 1, m) {
cin >> q[i].opt;
scanf("%lld%lld", &q[i].x, &q[i].y);
h[++num] = q[i].y;
}
h[++num] = 0;
sort(h + 1, h + num + 1);
num = unique(h + 1, h + num + 1) - h - 1;
rep(i, 1, m)
q[i].y = lower_bound(h + 1, h + num + 1, q[i].y) - h;
rep(i, 1, m) {
char ch; int x, y;
ch = q[i].opt, x = q[i].x, y = q[i].y;
if (ch == 'U') {
if (a[x])
add1(a[x], -1), add2(a[x], -h[a[x]]);
a[x] = y;
add1(a[x], 1);
add2(a[x], h[a[x]]);
} else {
puts(calc(x, y) ? "TAK" : "NIE");
}
}
return 0;
}
类似的题目还有 ATC143F - Distinct Numbers, 只是将 $s$ 替换为二分值 $mid$ 了。二分做法复杂度是 $O(nlog^2n)$, 但这里是利用答案单调性的 $O(n)$ 做法(容易发现,随着 $K$ 的减小,答案只会增加不会减少),然后前缀的预处理还是非常神仙的(从网上贺来的qwq),实在不懂可以模拟输出中间过程(其实也不难理解)
code :1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
using namespace std;
const int N = 3e5 + 10;
typedef long long ll;
ll n, x, a[N], K, cnt[N], sum[N], ans[N];
bool chk(ll k, ll x) { return sum[x] >= k * x; }
int main() {
cin >> n;
rep(i, 1, n) cin >> x, ++sum[++cnt[x]];
rep(i, 1, n) sum[i] += sum[i - 1];
ll now = 0;
for (int k = n; k >= 1; k--) {
while (now < n && chk(k, now + 1)) ++now;
ans[k] = now;
}
rep(i, 1, n) printf("%lld\n", ans[i]);
return 0;
}